skip to main content


Search for: All records

Creators/Authors contains: "Markee, Amanda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The regions of the Andes and Caribbean-Mesoamerica are both hypothesized to be the cradle for many Neotropical lineages, but few studies have fully investigated the dynamics and interactions between Neotropical bioregions. The New World hawkmoth genus Xylophanes is the most taxonomically diverse genus in the Sphingidae, with the highest endemism and richness in the Andes and Caribbean-Mesoamerica. We integrated phylogenomic and DNA barcode data and generated the first time-calibrated tree for this genus, covering 93.8% of the species diversity. We used event-based likelihood ancestral area estimation and biogeographic stochastic mapping to examine the speciation and dispersal dynamics of Xylophanes across bioregions. We also used trait-dependent diversification models to compare speciation and extinction rates of lineages associated with different bioregions. Our results indicate that Xylophanes originated in Caribbean-Mesoamerica in the Late Miocene, and immediately diverged into five major clades. The current species diversity and distribution of Xylophanes can be explained by two consecutive phases. In the first phase, the highest Xylophanes speciation and emigration rates occurred in the Caribbean-Mesoamerica, and the highest immigration rates occurred in the Andes, whereas in the second phase the highest immigration rates were found in Amazonia, and the Andes had the highest speciation and emigration rates. 
    more » « less
  2. null (Ed.)
  3. Insect silk is a versatile biomaterial. Lepidoptera and Trichoptera display some of the most diverse uses of silk, with varying strength, adhesive qualities, and elastic properties. Silk fibroin genes are long (>20 Kbp), with many repetitive motifs that make them challenging to sequence. Most research thus far has focused on conserved N- and C-terminal regions of fibroin genes because a full comparison of repetitive regions across taxa has not been possible. Using the PacBio Sequel II system and SMRT sequencing, we generated high fidelity (HiFi) long-read genomic and transcriptomic sequences for the Indianmeal moth (Plodia interpunctella) and genomic sequences for the caddisfly Eubasilissa regina. Both genomes were highly contiguous (N50  = 9.7 Mbp/32.4 Mbp, L50  = 13/11) and complete (BUSCO complete  = 99.3%/95.2%), with complete and contiguous recovery of silk heavy fibroin gene sequences. We show that HiFi long-read sequencing is helpful for understanding genes with long, repetitive regions. 
    more » « less
  4. Abstract

    Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.

     
    more » « less
  5. Abstract

    Characterising the frequency and timing of biological processes such as locomotion, eclosion or foraging, is often needed to get a complete picture of a species' ecology. Automated trackers are an invaluable tool for high‐throughput collection of activity data and have become more accurate and efficient with advances in computer vision and deep learning. However, tracking activity of small and fast flying animals remains a hurdle, especially in a field setting with variable light conditions. Commercial activity monitors can be expensive, closed source and generally limited to laboratory settings.

    Here, we present a portable locomotion activity monitor (pLAM), a mobile activity detector to quantify small animal activity. Our setup uses inexpensive components, builds upon open‐source motion tracking software, and is easy to assemble and use in the field. It runs off‐grid, supports low‐light tracking with infrared lights and can implement arbitrary light cycle colours and brightnesses with programmable LEDs. We provide a user‐friendly guide to assembling pLAM hardware, accessing its pre‐configured software and guidelines for using it in other systems.

    We benchmarked pLAM for insects under various laboratory and field conditions, then compared results to a commercial activity detector. They offer broadly similar activity measures, but our setup captures flight and bouts of motion that are often missed by beam breaking activity detection.

    pLAM can automate laboratory and field monitoring of activity and timing in a wide range of biological processes, including circadian rhythm, eclosion and diapause timing, pollination and flower foraging, or pest feeding activity. This low cost and easy setup allows high‐throughput animal behaviour studies for basic and applied ecology and evolution research.

     
    more » « less